The Real Dimension Problem Is Np R -complete Ecole Normale Supérieure De Lyon the Real Dimension Problem Is Np R -complete R Esum E the Real Dimension Problem Is Np R -complete

نویسنده

  • Pascal Koiran
چکیده

We show that computing the dimension of a semi-algebraic set of R n is a NP R-complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R-hard, the main ingredient of the proof is a NP R algorithm for computing the dimension. On montre que le calcul de la dimension d'un ensemble semi-alg ebrique de R n est un probl eme NP R-complet dans le mod ele de Blum-Shub-Smale de calcul sur les nombres r eels. Puisqu'il est facile de voir que ce probl eme est NP R-dur, le principal ingr edient de la preuve est un algorithme NP R de calcul de la dimension. Abstract We show that computing the dimension of a semi-algebraic set of R n is a NP R-complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R-hard, the main ingredient of the proof is a NP R algorithm for computing the dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Real Dimension Problem

We show that computing the dimension of a semi-algebraic set of R n is a NP R-complete problem in the Blum-Shub-Smale model of computation over the reals. Since this problem is easily seen to be NP R-hard, the main ingredient of the proof is a NP R algorithm for computing the dimension.

متن کامل

Achilles and the Tortoise Climbing up the Hyper-arithmetical Hierarchy Ecole Normale Supérieure De Lyon Achilles and the Tortoise Climbing up the Hyper-arithmetical Hierarchy

We pursue the study of the computational power of Piecewise Constant Derivative PCD systems started in PCD systems are dynamical systems de ned by a piecewise constant di erential equation and can be considered as computational machines working on a continuous space with a continuous time We prove that the languages recognized by rational PCD systems in dimension d k respectively d k k in nite ...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

Simulated Annealing Approach for Solving Bilevel Programming Problem

Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...

متن کامل

Contiguity Orders

This paper is devoted to the study of contiguity orders i.e. orders having a linear extension L such that all upper (or lower) cover sets are intervals of L. This new class is a strict generalization of both interval orders and N{free orders, and is linearly recognizable. It is proved that computing the number of contiguity extensions is #P{complete, and that the dimension of height one contigu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997